Special Issue "Targeted Cancer Therapy and Mechanisms of Resistance 2.0"
A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".
Deadline for manuscript submissions: 30 September 2021.
Share This Special IssueSpecial Issue EditorProf. Dr. Valentina De FalcoGuest Editor
Institute Experimental Endocrinology and Oncology "Gaetano Salvatore" IEOS, Università degli Studi di Napoli Federico II, Naples, Italy
Interests: cancer; kinase inhibitor; target therapy; signal transduction; cell cycle; mitogenesis; survival; resistance
Special Issue Information
Dear Colleagues,
Tumor cells commonly exhibit dependence on a single (often the initiating) activated oncogenic pathway or protein to maintain their malignant proliferation and survival, a phenomenon that is called “oncogene addiction”. According to this concept, protein kinases have been elected as promising molecular targets for cancer therapy. There are several possibilities to target these proteins in cancer, including monoclonal antibodies that can bind to the extracellular domain of the RTK, compounds able to favor the proteolytic degradation of the kinase and, finally, small molecule protein kinase inhibitors (PKIs). In addition to targeting oncogenes, new anticancer treatments have been increasingly developed towards tumor suppressor genes and RNA interference.
Despite promising results in cancer treatment with targeted cancer drugs, clinical experience has shown that only a fraction of patients respond to targeted therapies, even if their tumor expresses the altered target. This kind of resistance is known as primary resistance. Moreover, secondary or acquired resistance to the treatment arises almost invariably when tumors are treated with cancer drugs. Acquired resistance mechanisms can be divided into two main categories: (1) target-dependent and (2) target-independent mechanisms.
Target-dependent resistance typically occurs through genetic modifications of the target. Such genetic modifications may include point mutations and copy number amplifications. The acquisition of mutations conferring drug resistance has been documented for several PKIs, such as drugs against BCR/ABL, EGFR, FLT3, KIT and PDGFR. Evidence suggests mutation may pre-exist in a minority of cancer cells, and it is then selected upon treatment. This suggests that secondary PKI that can also bind the mutated kinase can be used to overcome resistance. Gene amplification is another major mechanism of target-dependent resistance. The selective pressure of the drug can drive amplification of the target gene, thus leading to additional overexpression of the encoded protein.
Instead, target-independent mechanisms occur through activation of alternative pathways that allow the bypass of the drug-mediated block. In other words, cancer cells escape treatment by switching to an alternative signaling pathway that is not inhibited by the drug.
Other mechanisms of resistance can exploit the enormous genome plasticity of cancer cells by modulating miRNA expression or remodeling chromatin. Finally, though not as commonly as with classical cytotoxic drugs, other resistance mechanisms can cause a decrease of the effective intracellular concentration of the targeted cancer drug.
Prof. Dr. Valentina De Falco
Guest Editor
Link
Utilizziamo i cookie per offrirti un'esperienza di navigazione migliore. Usando il nostro servizio accetti l'impiego di cookie in accordo con la nostra cookie policy.AccettoUlteriori informazioni
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.